If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-21x-56=0
a = 7; b = -21; c = -56;
Δ = b2-4ac
Δ = -212-4·7·(-56)
Δ = 2009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2009}=\sqrt{49*41}=\sqrt{49}*\sqrt{41}=7\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-7\sqrt{41}}{2*7}=\frac{21-7\sqrt{41}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+7\sqrt{41}}{2*7}=\frac{21+7\sqrt{41}}{14} $
| 8x+16+7x+14=360 | | 114y=39 | | 11(x+3)=11(4+3)= | | 9^2x=100 | | 5y+3y+4=34 | | 3x+¹=6x-¹ | | 11(x+3)=11(4+3) | | -7n+11=-38 | | 5m+3/7+72m-7/3=5 | | 0.14(x+280)=6300 | | 1/(1-0.22+0.66/x)=1.7 | | 5d+10=4(d+4) | | 25x+−11= | | 1/(0.78+(0.66/x))=1.7 | | 3=-9x+4 | | 1/((1-0.22)+(0.66/x))=1.7 | | 16/x+3=19 | | 79=4-5x | | 2(2f+3)=2(f+15) | | (130-m)=m | | x/2=(52)/(22) | | (2m-20)=m | | 92=v/571 | | 26=23(−6x+12) | | 2(2f+3)=2(f+15 | | 48=w+5w | | 77+9y=–4 | | 20c-c-7c-11c=12 | | (3x-25)=(2x+5) | | 13u-u-6u-4u-u=12 | | 3y+3=3(-y+5) | | -15s-(-20s)-(-13s)=(-18) |